08/03/2023

Solana prediction

 Solana prediction

 

import os
import numpy as np
import pandas as pd
import math
from sklearn.metrics import mean_squared_error
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.layers import LSTM, SimpleRNN



 

dataset['Adj Close'].dtype


epoch_number = 100
batches = 64
history = model.fit(train_X, train_y, epochs = epoch_number, batch_size = batches, verbose = 1,

 shuffle=False,
                    validation_split=0.1)

 

plt.clf
plt.figure(figsize=(10,8))
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.xlabel('Number of Epochs')
plt.ylabel('Train and Test Loss')
plt.title('Train and Test loss per epochs [Univariate]')
plt.legend()
plt.show()

 

tf.config.run_functions_eagerly(True)

history = model.fit(train_X, train_y, epochs = 50, batch_size=64, verbose=1,  

validation_split= 0.1)

 

plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()